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INTRODUCTION

As new computational tools become available there is frequently
a significant time period before the analytical capability is
compared to experimental data. The results of the heat transfer
feature of the NASTRAN (reference 1) computer program have not-
been extensively applied to measured thermal data. The contents
of this paper provide some insight into the usefulness of this
particular calculative tool. A typical aircraft type of structure
with spar/skin type of construction is partially heated for a
significant time period. The structure conducts, radiates, and
convects freely so that a fairly complicated laboratory test
situation is created. A NASTRAN thermal model is developed,
temperatures are calculated, and temperature calculations are
compared to laboratory measured temperatures.

SYMBOLS
Cp specific heat, J/kg-K° (BTU/lb=-F°)
h convective film coefficient, J/s—m2 (BTU/s~in2)
30 first and second numbers, consecutively

I thermal conductivity, J/s-m (BTU/s-in)



€ emissivity

p density, kg/m3 (lb/in3)

TEST STRUCTURE

A test structure with the cross-section properties shown in
figure 1 was used for a heating experiment. The length of the
specimen was 2.44 meters (96 inches). The skin was attached to zee-
shaped spars using mechanical fasteners. A lower cap was attached
to the bottom of the zee-shaped spars with mechanical fasteners.

The skin was fabricated of 2024 aluminum in the T3 condition. The
zee-shaped spars and the lower caps were fabricated of 6A1-4V
titanium.

INSTRUMENTATION

The test structure was extensively instrumented with Chromel-
Alumel thermocouples to measure structural temperatures. A bottom
view of the test structure is presented in figure 2 showing many
of the thermocouples. Measurements were taken on the spar side
of the skin, the upper spar caps, the spar webs, and the lower
spar caps.

TEST PROCEDURE

The heating test plan was to heat the upper surface (see figure
3) of the skin using radiant heaters. The lower part of the struc-
ture was shielded from the radiant heat. The skin was heated to
533 °K (500 °F) according to the time-history shown in figure 4.
The specimen was heated with the skins in a horizontal position
with the spars down. The ends and bottom of the specimen were
open so that it could convect freely. The specimen was unpainted
and the surface condition of the metal was as received from the
manufacturer.

ANALYSIS
Thermal Model

The computational efforts in this paper are directed toward
evaluating the heat transfer feature of the NASTRAN (reference 1)
computer program. A three~dimensional model of a small portion of
the center of the test structure was used for analysis. The basic
conduction model was formed of CHEXA2 elements as shown in the
cross-sectional representation in the upper part of figure 5. This
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model has a length of .203 meters (8 inches). A time-history of
temperature was applied to the model through the grid points
located on the upper surface of the skin. This constituted the
approach to the basic conduction model.

Radiation elements were added to the model as shown in the
lower part of figure 5. The view factors used for the two small
outer bays are identical and the view factors used for the three
inner bays are the same. The values used in the radiation matrix
(RADMTX) can be obtained by correlating the numbers of the
radiation elements in figure 5 to the area-view factor products
in figure 6. The values of the view factors were obtained from
tables and charts in references 2 and 3. These values were then
adjusted so that all the area-view factor products divided by the
area of the element were numerically close to N.99. This was done
so that energy lost to space (a specific characteristic of NASTRAN)
" was minimized. The openings (side and bottom) were closed with
radiation closure elements on the model so that nearly all of the
radiation exchanges were accountable. An additional parameter
greatly affecting the radiation heat transfer is the condition of
the surface of the metal which leads to the value for the
emissivity, €. A correct value for the emmissivity is critical to

the accuracy of the calculation.

Convection elements were included to simulate the losses from
the vertical elements (spars) of the test structure. Convective
heat transfer is, in general, a very complicated phenomenon. This
experiment provides no exception since the local circulation of
air in the proximity of the surfaces is a function of many variables.
The primary tool for adjusting to this circulation with NASTRAN is
through the convective film coefficient, h.

Analysis Sets

Since published experiences with the heat transfer part of
NASTRAN are quite limited, the analytical work was approached in
several logical steps. First, calculations of structural
temperatures were made with only conduction heat transfer. Then
radiation and convection were added to the problem in steps with
perturbations of radiation geometry, emissivity, and convective
film coefficient defining a group of analysis sets. The following
sections will define the analysis sets in detail.

Analysis Set l.- Temperatures at the grid points representing the
upper surface of the skin were input to the problem in the form

of a time-history identical to the laboratory skin heating of the
test specimen. The CHEXA2 elements were allowed to conduct only.

A thermal conductivity (k) value of 91.33 joules/second-meter

(2199 x 10"6 BTU/second-inch) was used for the aluminum elements



and a value of 4.82 joules/second-meter (116 x 10_6 BTU/second-
inch) was used for the titanium elements. A thermal capacity value

(pCp) of 2.67 x 106 joules/degree kelvin-meter3 (.023 BTU/degree

Fahrenheit—ihch3) was used for the aluminum elements and a value

ef 2.41 x lO6 joules/degree kelvin-meter3 (.0208 BTU/degree

Fahrenheit-inch3j was used for the titanium elements.

Analysis Set 2.- The conduction process is augmented by radiation
interchange between the lower skin surface elements and the spar
elements. Radiation to space (a characteristic feature of NASTRAN)
is allowed in the five unclosed bays. An emissivity of 0.9 was
used.

Analysis Set 3.- Conduction and radiation are used in this set,
however, non-conducting solid elements are added such that the

five bays are closed. The view factor matrix is adjusted so that
radiation losses to space are minimum and the solid elements are
maintained at room temperature like the laboratory floors and walls.
An emissivity of 0.9 was used.

Analysis Set 4.- Conduction and radiation with solid closure elements
are used and convection heat losses from the spar elements are

allowed. A value of 4.42 joules/second—meterz-degree kelvin
{{15% 55 10_6 BTU/second—inch2-degree Fahrenheit) was used for the
convective film coefficient. An emissivity of 0.9 was used.

Analysis Set 5.- Conduction and radiation with solid closure
elements are used and larger (than Analysis Set 4) convection
heat losses from the spar elements are allowed. A value of

5.59 joules/second—meterz—degree kelvin (1.9 x lO-6 BTU/second~

inch2-degree Fahrenheit) was used for the convective film
coefficient. An emissivity of 0.9 was used.

Analysis Set 6.- Conduction and radiation with the solid closure
elements are used and convection heat losses from the spar elements
are allowed. The same convective film coefficient as in the previous
set was used. A reduced emissivity value of 0.64 was used.

RESULTS AND DISCUSSION

Laboratory measured temperatures at five spar locations are
represented in figure 7 by the circular symbols. The data are
presented as a time-history for the forty minute test. The data
are compared to the temperatures calculated using Analysis Set 6.
As can be seen, the calculated data compare closely to the measured



data. Some lag is seen in the early part of the test in figures
7(c) and 7(d). This is attributed to the fact that the conduction
elements are more numerous than the radiation and convection
elements in the spars. Hence, the grid points for the radiation
and convection elements overlie the conduction elements and a
resulting overshoot in heat loss occurs at some of the grid points.
This causes premature radiation and convection losses at some grid
points due to the coarseness of the radiation and convection
representations. This anomaly would be eliminated by a larger
number of radiation and convection elements.

Several measured temperature (circular symbols) distributions
are shown in figure 8 for three different time segments (ten
minutes, twenty minutes, and forty minutes). The measured data are
compared to the values calculated using Analysis Set 6. The lag
discussed in the previous paragraph is seen in figure 8(a). This
effect is seen to dissipate in figure 8(b) and 8(c) as the
conduction heat transfer begins to dominate the middle and lower
elements of the model of the spar. The comparison of the measured
and the calculated values is gquite close at the forty minute time
slice.

All six analysis sets are compared to the laboratory measured
data in figure 9 for the time slice of forty minutes. It can be
seen that the calculated values are high and have a large gradient
from top to bottom of the spar for conduction only (Analysis Set 1).
The addition of radiation (Analysis Sets 2 and 3) lessens the
gradient and it can be seen that the closure elements raise the
temperature. The addition of convection (Analysis Sets 4 and 5)
lowers the temperatures significantly and the larger convective
film coefficient case is seen to be fairly close to the
experimental data. The last iteration (Analysis Set 6) illustrates
the importance of the emissivity assumption. When the emissivity
is changed from 0.9 to 0.64, the data are found to correlate
extremely well.

There are several results that are of particular interest.
The use of NASTRAN is particularly convenient for heat transfer if
the ultimate goal is to achieve a structural analysis since it is
practical to use common grid points and elements. Acceptable
results were obtained without varying several thermal properties
with temperature. The temperature variation of these parameters
was apparently not large enough to affect the predicting capability
for the range of temperatures in the test. Both radiation and
convection modes of heat transfer are significant effects for this
type of test with this type of structure. Assuming these two modes
of heat transfer to be negligible would be a poor assumption.



CONCLUDING REMARKS

A typical spar/skin aircraft structure was heated non-uniformly
in a laboratory and the resulting temperatures were measured. The
heat transfer function of the NASTRAN computer program was used to
provide predictions. The measured and calculated data were
compared.

Calculated temperatures based on a thermal model with
conduction, radiation, and convection features compared closely
to measured spar temperatures. Acceptable results were obtained
without varying the thermal conductivity, specific heat, or
emissivity with temperature since the range of temperature
variations was not large. All modes of heat transfer {cond@uction;
radiation, and convection) were shown to significantly affect the
magnitude and distribution of structural temperatures.

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, Calif., April 20, 1981
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Figure 2. Bottom view of test specimen showing instrumentation.
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Figure 3. Sketch of test set-up illustrating the heating
technique.



‘uswtoads 3s93 8yl JO uTlys oYz o3 partrdde sinjezadusiy JO AI03STY-9WTL ' 2InhT]

ss3jnuTw ‘8wt

0¥ vE 0¢ 0T 0
J I r I ==
0
= - Ut
oud ule =
i e 1
-~ ubLvw
‘aanjeasaws], —
Uup = ‘aanjelsuua
- LlLY
U0y = - uuy

10



= 5 S| [ =] 1 I T A PR A |
1 1
.| H
Arrangement of Conduction Elements
29 | 4
5gll iI3 55] i1
30|27 2 6 H
25 8

Arrangement of Radiation Elements

Figure 5. Configuration of the thermal model.
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